Информация о педагогике » Подготовка школьников к итоговой аттестации в форме ЕГЭ » Упражнения и методические рекомендации для подготовки учащихся к сдаче заданий уровня А

Упражнения и методические рекомендации для подготовки учащихся к сдаче заданий уровня А

Страница 13

Ответ: 2.

Второе решение. Известно, что если a≥0, b≥0, то . При этом равенство достигается в том и только в том случае, если . Тогда . В нашем случае равенство достигается только при . При х=0 функция принимает наименьшее значение. Отсюда получаем, что наименьшее значение исходной функции равно 2 и достигается оно при х=0.

Третье решение. Перепишем формулировку, заданную функцию следующим образом: . В декартовой системе координат рассмотрим точки . Тогда

1)

2) Точка D расположена на прямой .

З) Значение исходной функции равно сумме расстояний AD+BD.

В таком случае все сводится к решению известной геометрической задачи: на прямой СD найти такую точку D, чтобы сумма расстояний АD+ВD была наименьшей.

Для решения отображаем А симметрично относительно СD. Обозначим новую точку Теперь соединим точки В и . Расстояние B и будет наименьшим. Так как АВ=1, А, то При этом легко доказать, что прямая B проходит через точку С.

Четвертое решение. Для определения наименьшего значения применим производную: .

Найдем критические точки: .

Комментарий.

Решая данное уравнение, получаем, что х=0. Исследовав значения производной, приходим к выводу, что в этой критической точке – наименьшее значение функции.

Теперь видно, что стандартное исследование поведения функции по производной достаточно сложно (попробуйте его реализовать). Поэтому подготовка учащихся к ЕГЭ должна предусматривать обучение поиску наибольшего и наименьшего значений без производных (это должно проводиться в 8–10 классах).

Задание 7.

Найдите наименьшее значение функции .

Решение. Сразу видно, что применение производной приведет к серьезным осложнениям. Поступим иначе. Рассмотрим функции и . Легко убедиться, выделяя квадрат подкоренного выражения и учитывая свойство монотонности функции , что первая функция имеет наименьшее значение при х=1. Так как при всех х, то вторая функция имеет наименьшее значение 0, и оно достигается при , т.е. при х=1+2n, . Среди чисел вида х=1+2n, содержится число 1. Отсюда следует, что функции и принимают свои наименьшие значения при х=1. Следовательно, исходная функция принимает наименьшее значение при х=1. .

Страницы: 8 9 10 11 12 13 14 15

Новые статьи:

Педагогическая теория Аристотеля
Будучи учеником Платона, Аристотель рано, однако, разошелся во взглядах со своим учителем, не принял его учения о разделении мира на мир идей и мир вещей. Оставшись на позициях объективного идеализма, он разработал ряд материалистических положений. Аристотель признавал единство мира, неотделимость ...

Краткая характеристика эпохи Возрождения
14-15 века, вошедшие в историю под названием эпохи Возрождения, характеризуются появлением внутри феодального общества зачатков капиталистического способа производства, развитием мануфактуры и торговли, возникновением прогрессивного тогда класса- буржуазии, которая возродила культуру античного мира ...

Возрастные особенности эмоционально-ценностного компонента у младших школьников
Возрастное развитие человека - это непрерывный процесс самоизменения, каждый этап которого связан с ведущим видом деятельности, проходит в определенной социальной ситуации развития и характеризуется появлением новых психических новообразований и изменением личности. Динамика перехода от одного возр ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2025 - All Rights Reserved - www.basiseducate.ru