Ответ: 2.
Второе решение. Известно, что если a≥0, b≥0, то . При этом равенство достигается в том и только в том случае, если
. Тогда
. В нашем случае равенство достигается только при
. При х=0 функция
принимает наименьшее значение. Отсюда получаем, что наименьшее значение исходной функции равно 2 и достигается оно при х=0.
Третье решение. Перепишем формулировку, заданную функцию следующим образом: . В декартовой системе координат рассмотрим точки
. Тогда
1)
2) Точка D расположена на прямой .
З) Значение исходной функции равно сумме расстояний AD+BD.
В таком случае все сводится к решению известной геометрической задачи: на прямой СD найти такую точку D, чтобы сумма расстояний АD+ВD была наименьшей.
Для решения отображаем А симметрично относительно СD. Обозначим новую точку Теперь соединим точки В и
. Расстояние
B и будет наименьшим. Так как АВ=1, А
, то
При этом легко доказать, что прямая
B проходит через точку С.
Четвертое решение. Для определения наименьшего значения применим производную: .
Найдем критические точки: .
Комментарий.
Решая данное уравнение, получаем, что х=0. Исследовав значения производной, приходим к выводу, что в этой критической точке – наименьшее значение функции.
Теперь видно, что стандартное исследование поведения функции по производной достаточно сложно (попробуйте его реализовать). Поэтому подготовка учащихся к ЕГЭ должна предусматривать обучение поиску наибольшего и наименьшего значений без производных (это должно проводиться в 8–10 классах).
Задание 7.
Найдите наименьшее значение функции .
Решение. Сразу видно, что применение производной приведет к серьезным осложнениям. Поступим иначе. Рассмотрим функции и
. Легко убедиться, выделяя квадрат подкоренного выражения и учитывая свойство монотонности функции
, что первая функция имеет наименьшее значение при х=1. Так как
при всех х, то вторая функция имеет наименьшее значение 0, и оно достигается при
, т.е. при х=1+2n,
. Среди чисел вида х=1+2n,
содержится число 1. Отсюда следует, что функции
и
принимают свои наименьшие значения при х=1. Следовательно, исходная функция принимает наименьшее значение при х=1.
.
Пенитенциарная педагогика
Пенитенциарная педагогика - отрасль педагогической науки, изучающая деятельность по исправлению лиц, совершивших преступление и осуждённых к различным видам наказаний. Объектом пенитенциарной педагогика является воспитательная система органов, исполняющих наказание, предметом - закономерности и осо ...
Экспериментальная апробация и проверка эффективности использования СДО
Moodle для информатизации образовательного процесса
В этом разделе мы рассмотрим результаты внедрения СДО Moodle, и системы "Электронный деканат" версии 1.2 в государственном среднем общеобразовательном учреждении ЦО "Технологии обучения". После внедрения СДО Moodle в процесс образования он изменился, по нескольким параметрам. Ра ...
Методы и приемы передачи ценностей и
эмоционально-волевого развития младших школьников
Метод обучения – система действий учителя, организующего практическую и познавательную деятельность ученика, которая устойчиво ведет к усвоению содержания образования. Номенклатура методов: объяснительно-иллюстративный, репродуктивный, проблемного изложения, частично поисковый, исследовательский, м ...
Психологические знания в работе учителя
Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.