Информация о педагогике » Развитие функциональной линии в курсе алгебры 7-9 классов » Методические рекомендации по изучению функциональной линии в 8 классе

Методические рекомендации по изучению функциональной линии в 8 классе

Страница 4

№ 710.

Дана функция Найдите значение этой функции для значения аргумента, равного –3; –2;0; 0,1; 5.

Основная трудность для учащихся – определить, в какую формулу подставлять заданные значения аргумента. Поэтому полезно сначала предложить ученикам назвать несколько значений х, для которых значение функции вычисляется по формуле , и найти значение функции для кого-нибудь из названных значений х. Затем пусть учащиеся назовут несколько значений х, для которых значение функции равно 5.

Упражнение следует выполнять подробно – для каждого из данных чисел определить, к какому из промежутков оно принадлежит и по какой формуле надо вести вычисление ( следовательно, и т.д.).

№ 711.

Дана функция Найдите значение этой функции при значении аргумента, равном:

а)

; ; ;

б) ; ; .

Это задание аналогично заданию № 710

, но в вычислительном отношении труднее. Полезно ввести подробную запись:

б)

=;

, ;

, .

№ 717.

Пусть , . Найдите:

а)

;

в)

.

Это более сложное задние на понимание символических записей, на их раскодирование. В пункте в)учащиеся фактически имеют дело со сложной функцией. Однако здесь, конечно, это понятие не вводится.

Чтобы понять смысл такой записи, как , надо просто внимательно её прочитать, а именно: значение функции f при значении аргумента, равном . Теперь ясно, как найти значение данного выражения: , .

В результате изучения пункта учащиеся должны понимать и правильно употреблять функциональную терминологию (функция, аргумент, область определения функции), записывать функциональные соотношения с использованием символического языка (). В несложных случаях выражать формулой зависимость между величинами, находить по формуле значение функции, соответствующее данному аргументу, и аргумент, которому соответствует данное значение функции.

В третьем пункте «График функции» вначале введены новые обозначения для числовых промежутков, которые уже рассматривались в 7 классе и задавались с помощью неравенств: отрезок, интервал, луч (замкнутый и открытый). Таким образом, с этого момента учащиеся могут пользоваться любым из обозначений. Например, множество чисел, больших 2, можно обозначать двумя способами: х > 2 и (2; +∞).

После этого вводится собственно материал, связанный с графиками функций. Рассматриваемые в пункте две задачи являются центральными на данном этапе изучения материала. Первая – это нахождение с помощью графика значения функции, соответствующего заданному значению аргумента, а также значений аргумента, которым соответствует данное значение функции. Вторая – это построение графиков функций по точкам.

Страницы: 1 2 3 4 5 6 7 8 9

Новые статьи:

Цели современного исторического образования
Изучение историко-обществоведческих знаний в школе - база для всего гуманитарного образования и основа для формирования собствен­ной жизненной позиции человека. Объектом изучения истории является прошлое людей и человечества в их естественном и социальном развитии (человек, природа, общество). Пред ...

Значение, задачи и средства физического воспитания детей старшего дошкольного возраста
Под физическим развитием понимается формирование опорно-двигательного аппарата, основных двигательных качеств (ловкость, гибкость, координация движений и др.), навыков и умений. Физическое воспитание – педагогический процесс, направленный на формирование двигательных навыков, психофизических качест ...

Анализ полученных результатов
В апреле было проведено итоговое контрольное обследование детей. Цель обследования : выявить динамику овладения связной речью детьми пятого года жизни в результате опытного обучения, сравнить результаты констатирующего и формирующего экспериментов. Нами было обследовано 12 детей. Для обследования б ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2025 - All Rights Reserved - www.basiseducate.ru