Информация о педагогике » Развитие функциональной линии в курсе алгебры 7-9 классов » Методические рекомендации по изучению функциональной линии в 8 классе

Методические рекомендации по изучению функциональной линии в 8 классе

Страница 3

Во втором пункте «Что такое функция» вводятся понятие функции, а также некоторые связанные с ним понятия: зависимая и независимая переменные, аргумент (независимую переменную называют аргументом), область определения функции (все значения, которые может принимать аргумент, образуют область определения функции). С этого момента начинает использоваться функциональная символика . Рассматриваются способы задания функции – графически, аналитически, таблично.

Функция трактуется как зависимая переменная, значения которой однозначно определяются значениями другой переменной (переменную у называют функцией переменной х, если каждому значению х из некоторого числового множества соответствует одно определённое значение переменной у). Таким образом, можно сделать вывод, что для введения понятия функции используется генетический подход.

Цель изучения данного пункта – это ознакомление учащихся с различными ситуациями, в которых употребляется термин «функция», введение нового словаря и обучение его применению. В тексте специально подчеркивается многозначность слова «функция» и широкий диапазон его применения в математике – для обозначения и зависимой переменной, и самой зависимости, и правила, по которому устанавливается зависимость между переменными.

Особенностью принятого подхода является его явный прикладной характер (само понятие функции вводится и иллюстрируется на основе зависимостей, взятых из реальной жизни). Обращается внимание на некоторые различия в применении символики в математике и в физике, обсуждается вопрос о сужении области определения функции в практических задачах – физических, геометрических и т.д.

Система упражнений.

В данном пункте содержатся упражнения на задание формулами функций, описывающих самые разнообразные реальные ситуации (это не новая для учащихся работа, они уже много раз задавали зависимости с помощью формул). В ходе выполнения указанной группы упражнений школьники овладевают новыми понятиями и осваивают введённую терминологию. Часть упражнений этого пункта направлены на усвоение функциональной символики (при выполнении некоторых из них учащимся придётся переводить на символический язык содержательные утверждения о функциях, то есть учится различными способами выражать одну и ту же мысль). Кроме того, есть задания, где по данному значению аргумента необходимо найти значение функции и, наоборот, по значению функции найти значение аргумента с использованием формулы и графика.

Комментарии к некоторым упражнениям:

№ 700.

Число диагоналей p выпуклого многоугольника является функцией числа его сторон n. Задайте эту функцию формулой. Какова её область определения? Заполните таблицу, в которой даны некоторые значения аргумента n и функции p:

p

5

10

n

14

54

Проинтерпретируйте полученные результаты на геометрическом языке.

В этом задании от учащихся требуется применить некоторые знания из геометрии.

Рассмотрим, как составляется эта функция.

Каждая из п вершин соединяется диагональю со всеми остальными вершинами многоугольника, кроме двух соседних, т.е. с (п – 3) вершинами. Умножив п на , получим удвоенное число диагоналей многоугольника (так как каждая диагональ при таком способе подсчета посчитана дважды). Чтобы получить число диагоналей многоугольника, надо это произведение разделить на 2. Получаем формулу, выражающую число диагоналей многоугольника через число его сторон: .

Область определения функции: п – натуральное число, п ≥ 4.

Последнее задание требует от учащихся умения объяснять числовой результат. Комментарии могут быть разными, например: «Если в многоугольнике 14 диагоналей, то у него семь сторон», «В семиугольнике 14 диагоналей» и так далее.

Страницы: 1 2 3 4 5 6 7 8

Новые статьи:

Рабочая программа «Летний отдых учащихся» в практике социального педагога
В чём смысл современной концепции организации системы летнего отдыха детей и подростков? Какое место занимает эта система в формировании личности ребёнка? По мнению автора работы, это не особая педагогическая система или методика – но, прежде всего неотъемлемая составляющая всей жизнедеятельности р ...

Теория поэтапного формирования умственных действий
развивающий обучение интенсификация умственный Суть теории: в основе теории лежит идея о принципиальной общности внутренней и внешней деятельности человека. Согласно этой идее, умственное развитие, как и усвоение знаний, навыков, умений, происходит путем интериоризации, т.е. поэтапным переходом «ма ...

Наблюдение – как средство формирования у старших дошкольников знаний об аквариумных рыбках его
Среди разнообразных методов экологического воспитания дошкольников важное место следует отнести наблюдению. Наблюдение — это специально организованное воспитателем, целенаправленное, более или менее длительное и планомерное, активное восприятие детьми объектов и явлений природы. При этом восприятие ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2024 - All Rights Reserved - www.basiseducate.ru