После этого рассматривается параболоид (фигура, полученная вращением параболы вокруг оси симметрии) и приводятся примеры параболоидов (например, фары автомобиля). Теоретическая часть пункта завершается рассказом об особенностях параболических зеркал.
Система упражнений:
упражнения на восстановление навыка использования функциональной символики, а также приёмов нахождения значения у по заданному значению х (и наоборот) с использованием формулы и графика;
упражнения на овладение одним из алгоритмов построения графика квадратичной функции (вершины, оси параболы и с помощью симметричных точек).
Комментарии к некоторым упражнениям:
№ 184.
Найдите на рисунке 10 график функции , где
. Запишите на символическом языке утверждение и проверьте, верно, ли оно:
а)
Верно ли, что g(2) > 0, g(–1) < 0, g(3,5) > 0;
б)укажите несколько значений х, при которых g(х) > 0, g(х) < 0.
Рис. 10
Указание. Учащиеся должны сформулировать общее утверждение: если точка графика расположена выше оси х, то g(x) > 0; если точка лежит ниже оси х, то g(x) < 0.
№ 186.
Найдите нули функции или покажите, что их нет:
а)
;
б)
;
в)
;
г)
.
В каждом случае опишите полученный результат на геометрическом языке. Попробуйте схематически изобразить соответствующую параболу в координатной плоскости.
Указание. Учащимся ещё неизвестно о зависимости направления ветвей параболы от знака первого коэффициента квадратного трехчлена, поэтому и ответ о расположении графика по идее должен быть неоднозначным. Таким решением можно ограничиться на данном этапе изучения темы. В то же время с сильными учениками обсуждение вопроса целесообразно продолжить. Быть может, кто-то из них, рассматривая рис. 10 и строя графики по точкам, обратит внимание на то, что при а > 0 ветви параболы направлены вверх. Нужно сказать, что это верное умозаключение, но оно нуждается в доказательстве. Однако выяснить положение параболы не сложно.
№ 187.
Докажите, что:
а)
числа –4 и 3 являются нулями функции ;
б)
функция не имеет корней.
В каждом случае сформулируйте задачу иначе, используя слова: «уравнение» и «корень уравнения», «трёхчлен» и «корень трёхчлена», «график функции» и «точка пересечения».
Решение.
а)
Можно убедиться подстановкой, что при и х = 3 значение трехчлена
равно нулю, а можно решить уравнение
.
б)
Достаточно показать, что дискриминант трехчлена отрицателен.
Во втором пункте «График и свойства функции », как и в предыдущем, ставятся две цели: знакомство с частным случаем квадратичной функции у=ах2 и развитие представлений об общих свойствах функций.
Сначала рассматривается случай . Отдельно выделен случай
и делается замечание, что с этой функцией учащиеся уже встречались (
). Далее строятся два графика функций
и
. Затем делается замечание, что у этих парабол ветви направлены вверх, вершиной служит начало координат, а ось симметрии – ось ординат и оговаривается, что такими свойствами обладает график любой квадратичной функции
при а > 0.
После чего учащимся предлагается рассмотреть рисунок, на котором изображены три графика функций ,
,
и оценивается «крутизна» этих графиков. Затем рассматривается функция
при а < 0 и строится график функции
. Сравнивая графики функций
и
делается вывод о том, что график второй функции можно получить из графика первой функции симметрией относительно оси абсцисс. Далее снова в одной системе координат построены графики
,
,
и обращается внимание, что ветви любой параболы при а < 0 направлены вниз. Затем делается вывод: графиком функции
, где а ≠ 0, является парабола с вершиной в начале координат; её осью симметрии служит ось ординат; при а > 0 ветви параболы направлены вверх, при а < 0 ветви направлены вниз.
Связь универсальных учебных действий с содержанием учебного
предмета «Русский язык» начальной ступени
Учебный предмет «Русский язык» обеспечивает формирование личностных, познавательных, коммуникативных и регулятивных действий. Работа с текстом открывает возможности для формирования логических действий анализа, сравнения, установления причинно-следственных связей. Ориентация в морфологической и син ...
История возникновения современного бального танца
Бальный танец – один из жанров хореографического искусства, основу которому дал народный танец, относящийся к бытовой хореографии. На протяжении веков «понятие бальные танцы включали в себя бытовые жизненные ситуации (балы, праздники), где их непосредственная функция выражается в общении между парт ...
Отличие литературной сказки от народной
Определив в предыдущем параграфе понятие литературной сказки, ее основные черты, особенности и отличие от народной (фольклорной), представляется необходимым рассмотреть подробнее эти отличие. Как следует из предыдущего параграфа, настоящей работы, ситуация с трактовкой понятия "литературная ск ...
Психологические знания в работе учителя
Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.